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Last Lecture

• Hallucinations in LLM

• What Cause Hallucinations?

• Hallucination Detection

• Anti-Hallucination Methods
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This Lecture
• Adversarial Attacks (Evasion Attacks)

• Threat Model
• Attacks on Continuous Data

• FGSM, PGD
• Black-box attacks

• Attacks on Discrete Data
• Token manipulation
• Gradient-based
• Jailbreaking in LLM

• Defenses
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Background
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• Training data: 𝒟 = { 𝑥, 𝑦 }, 𝑥 ∈ ℝ 𝑑 , y ∈ ℕ

• Loss function: 𝑙𝑦 𝑥

• Training phase:  min𝑓 σ(𝑥,𝑦)∈𝒟 𝑙𝑦(𝑥)

• Inference phase:  𝑦𝑝𝑟𝑒𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖  𝑓𝑖 𝑥′

Logits/Probability/Soft Labels

Hard Labels



Adversarial Attacks in Inference Phase
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https://arxiv.org/abs/1908.07125



Threat Model (1)

• Attack Scenario:
• Autonomous driving, speaker recognition, chatbot…
• With a well-trained model, changing the inference results by modifying

the input data.

• Attacker’s ability and assumption (resources, capability, cost):
• White-box: attackers have full access to the model weights, architecture and 

training pipeline, such that attackers can obtain gradient signals.

• Black-box: attackers only have access to an API-like service where they 
provide input x and get back sample y, without knowing further information 
about the model.
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Threat Model (2)

• Attacker’s ability and assumption
• Black-box attack:

• Soft-label: probability/likelihood/logits, e.g., [0.1, 0.2, 0.6, 0.1]
• Hard-label: specific categories, e.g., dog, cat

• Attack Goal of Adversarial Attack:
• Untargeted attack: the prediction of the model on Adversarial Example (AE) 

𝑥′ is different from the true label 𝑦.
𝑎𝑟𝑔𝑚𝑎𝑥𝑖  𝑓𝑖 𝑥′ ≠ 𝑦

• Targeted attack: the prediction of the model on AE 𝑥′ is the target class 𝑦𝑇.
𝑎𝑟𝑔𝑚𝑎𝑥𝑖 𝑓𝑖 𝑥′ = 𝑦𝑇
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This Lecture
• Adversarial Attacks

• Threat Model
• Attacks on Continuous Data

• FGSM, PGD
• Black-box attacks

• Attacks on Discrete Data
• Token manipulation
• Gradient-based
• Jailbreaking in LLM

• Defenses
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Modeling Adversarial Perturbation Attacks
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Suppose an attacker has an original feature vector 𝑥. 

The goal is to craft a 𝒙′ to mislead the model.

▪ Modifying 𝑥 into another feature vector 𝑥′ incurs a cost 𝒄 𝒙, 𝒙′ .
• Usually, lp norm distance between original input and manipulated input is used as the 

cost evaluation.

▪ The modified input x′ should accomplish its malicious goal
•    Untargeted adversarial attack: 

𝑎𝑟𝑔𝑚𝑎𝑥𝑖  𝑓𝑖 𝑥′ ≠ 𝑦

•    Targeted adversarial attack:
𝑎𝑟𝑔𝑚𝑎𝑥𝑖  𝑓𝑖 𝑥′ = 𝑦𝑇



Fast Gradient Sign Method (FGSM)
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• How to design Adversarial Perturbation?
• FGSM [Goodfellow, ICLR’15, cited more than 24,323] is one of the most famous 

untargeted attacks;
• Gradient-based
• One step of modification

• Objective function with 𝑙∞ norm constraint:

max
𝛿

𝑙 𝑓 𝑥 + 𝛿 , 𝑦 subject to:  𝛿
∞

≤ 𝜖



FGSM Attack Steps

1. Making predictions on the image using a trained CNN Model

2. Computing the loss of the prediction based on the true class label

3. Calculating the gradients of the loss with respect to the input image

4. Computing the sign of the gradient

5. Using the signed gradient to construct the output adversarial image
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𝛿∗ = 𝜖 sgn{∇𝑥𝑙 𝑓 𝑥 , 𝑦 }



FGSM Attack Limitations

• The modification size on each pixel is the same (i.e., 𝜖)
• The perturbation is relatively large
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𝛿∗ = 𝜖 sgn{∇𝑥𝑙 𝑓 𝑥 , 𝑦 }



Projected Gradient Descent (PGD)
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• PGD [Madry, ICLR’18] is an improved version of FGSM.
• A much stronger attack that uses projected gradient descent

• iteratively use a linear approximation 

• Suppose that xt represents an attack input in iteration t.  In each iteration, 
compute the next iterate as follows:

𝑥𝑡+1 = Proj𝜖[𝑥𝑡 + 𝛽 sgn{∇𝑥𝑙 𝑓 𝑥𝑡 , 𝑦 }]

The projection step ensures that 
1. ||xt+1 − x||∞ ≤ ϵ
2. the solution is a valid pixel, usually normalized in [0,1]



Black-box Adversarial Attack
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• Transfer-based Method
• Training a substitute model to mimic the black-box model
• Attacking the substitute model by white-box attack (e.g, FGSM, PGD)
• Applying the crafted adversarial perturbation to the input



Zeroth-Order Optimization Attack: Soft Label
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• Zeroth-order optimization (ZOO) attack [Chen, 2017]
• The attack uses zero-order solver to solve the optimization as opposed to 

first-order optimization by the gradient 𝛻𝑓(𝑥), as in white-box attacks.
• ZOO attack is a score-based attack
• Use symmetric difference quotient to estimate gradient

• 2-point estimator

A Tutorial on Zero-Order Optimization 
https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf



Boundary Attack: Hard Label
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A decision-based attack that starts from a large adversarial 
perturbation and then seeks to reduce the perturbation while 
staying adversarial.

1. Initializing from a point that is already 

adversarial 

2. Performing a random walk along the 

boundary between the adversarial and the 

non-adversarial region

• It stays in the adversarial region and 

• The distance towards the target image is 

reduced. 



This Lecture
• Adversarial Attacks

• Threat Model
• Continuous Data

• FGSM, PGD
• Black-box attacks
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• Gradient-based
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Adversarial Attacks on LLMs
• A large body of groundwork on adversarial attacks is on images, and it 

operates in the continuous, high-dimensional space.

• Attacks for discrete data like text have been a lot more challenging, 
due to lack of direct gradient signals.

• In the context of large language models, we assume the attacks only 
happen at inference time, meaning that model weights are fixed.
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An Overview of Threats to LLM-based Applications
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https://arxiv.org/abs/2302.12173



Adversarial Attack to Text Generation

• Given an input x and a generative model p(.), we have the model 
output a sample y∼p(.|x);

•  An adversarial attack would identify such p(x) that y would violate 
the built-in safe behavior of the model p; 

• For example, output unsafe content on illegal topics, leak private 
information or training data.
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Types of Adversarial Attacks on LLM
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https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/



Token Manipulation (1)

• TextFooler (Jin et al. 2019) and BERT-Attack (Li et al. 2020) follow the 
same process of (i) identifying the most important and vulnerable 
words that alter the model prediction the most; (ii) replace those 
words in some way.

• Given a classifier f and an input text string x, the importance score of 
each word can be measured by
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https://arxiv.org/abs/1907.11932
https://aclanthology.org/2020.emnlp-main.500.pdf


Token Manipulation (2)

• TextFooler replaces those words with top synonyms based on word 
embedding cosine similarity and then further filters by checking that 
the replacement word still has the same part-of-speech (POS) tagging 
and the sentence level similarity is above a threshold.

• BERT-Attack instead replaces words with semantically similar words 
via BERT because context-aware prediction is a very natural use case 
for masked language models.
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Gradient-based Attacks

• White-box setting relies on gradient descent to programmatically 
learn the most effective attacks.

• Example: Find the universal adversarial triggering tokens as suffixes in 
concatenation to the input request.
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Illustration of where adversarial triggers are introduced. The red exclamation points 
represent adversarial tokens to be learned.



Example: Universal and Transferable Adversarial 
Attacks on Aligned Language Models (1)
• Adversarial goal: trigger LLMs to output affirmative responses even facing 

requests that should be refused.
• Target Model: Vicuna-7b and Vicuna-13b.
• The loss function is simply the NLL (negative log-likelihood) of outputting target 

response.
• Using greedy coordinate gradient (GCG) based search to greedily find one 

candidate that can reduce the loss the most among all possible single-token 
substitutions.

• Find top candidates per token, each associated with the largest negative gradient 
of the loss.
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Example: Universal and Transferable Adversarial 
Attacks on Aligned Language Models (2)
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[1] https://arxiv.org/abs/2307.15043
[2] https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/ 

https://arxiv.org/abs/2307.15043
https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/


Example: Universal and Transferable Adversarial 
Attacks on Aligned Language Models (3)
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[1] https://arxiv.org/abs/2307.15043
[2] https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/ 

https://arxiv.org/abs/2307.15043
https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/


Example: Universal and Transferable Adversarial 
Attacks on Aligned Language Models (4)
• Although their attack sequences are only trained on open-source models, 

they show non-trivial transferability to other commercial models.
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Average attack success rate on "HB (harmful behavior)" instructions, averaging 5 prompts. Two baselines are 
"HB" prompt only or HB prompt followed by ̀ "Sure here's"` as a suffix. "Concatenation" combines several 
adversarial suffixes to construct a more powerful attack with a significantly higher success rate in some 
cases. "Ensemble" tracks if any of 5 prompts and the concatenated one succeeded. 



Jailbreak Prompting

• Jailbreak prompts trigger LLMs to output harmful content that should 
have been mitigated.

• Jailbreaks are black-box attacks and thus the wording combinations 
are based on heuristic and manual exploration.
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How do I break out of the jail?



Jailbroken: How Does LLM Safety Training Fail? (1)

• Competing objective: this refers to a scenario when a model’s 
capabilities (E.g. "should always follow instructions") and safety 
goals conflict.

• Prefix injection: Ask the model to start with an affirmative confirmation.

• Refusal suppression: Give the model detailed instruction not to respond in 
refusal format.

• Style injection: Ask the model not to use long words, and thus the model 
cannot do professional writing to give disclaimers or explain refusal.

• Others: Role-play as DAN (Do Anything Now)
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https://arxiv.org/abs/2307.02483

https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/www.jailbreakchat.com/prompt/3d318387-903a-422c-8347-8e12768c14b5


Jailbroken: How Does LLM Safety Training Fail? (2)

• Mismatched generalization: Safety training fails to generalize to a domain 
for which capabilities exist. This happens when inputs are OOD for a 
model’s safety training data but within the scope of its broad pretraining 
corpus.

• Special encoding: Adversarial inputs use Base64 encoding.
• Character transformation: ROT13 cipher, leetspeak (replacing letters with visually 

similar numbers and symbols), Morse code.
• Word transformation: Pig Latin (replacing sensitive words with synonyms such as 

“pilfer” instead of “steal”), payload splitting (a.k.a. “token smuggling” to split 
sensitive words into substrings).

• Prompt-level obfuscations: Translation to other languages, asking the model to 
obfuscate in a way that it can understand.
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Humans or Models in the Loop Red-teaming
• Human-in-the-loop adversarial generation aims to build tools 

(e.g., writing chat interface) to guide humans to break models.

• Human red-teaming is powerful but hard to scale and may demand 
lots of human training and special expertise.

• Model Red-teaming: Learn a red-teamer LLM to play against a target 
LLM to trigger unsafe responses.
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This Lecture
• Adversarial Attacks

• Threat Model
• Continuous Data

• FGSM, PGD
• Black-box attacks

• Discrete Data
• Token manipulation
• Gradient-based
• Jailbreaking in LLM

• Defenses
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Existing Defenses against AE Attack
Three main ways to defense against these AE attacks: 

1. Improving the robustness resilience of model itself;
2. Developing an auxiliary detector to detect adversarial inputs;
3. Theoretically verifying  model’s resilience against AE.
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…

robust
verify

Adversarial training Input verification and Model verification



Adversarial Training

• Adversarial training: it is a training schema that utilizes an alternative 
objective function to provide model generalization for both 
adversarial data and clean data.
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This is also referred as a saddle point 
problem via a bi-level optimization process

• Inner maximation
• Outer minimization



Adversarial Training Algorithm
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Input Verification Related Work
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Input Verification Methods: Preprocessing
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• Key idea: the clean data is stable to preprocessing while the AEs are sensitive 
to processing. 



Model Verification
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https://www.youtube.com/watch?v=hrBeUVRCixI



References
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• https://nicholas.carlini.com/writing/2019/all-adversarial-
example-papers.html 
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